E01 – Interpolation e01ba

NAG Toolbox for MATLAB e01ba

1 Purpose

e01ba determines a cubic spline interpolant to a given set of data.

2 Syntax

$$[lamda, c, ifail] = e0lba(x, y, 'm', m)$$

3 Description

e01ba determines a cubic spline s(x), defined in the range $x_1 \le x \le x_m$, which interpolates (passes exactly through) the set of data points (x_i, y_i) , for i = 1, 2, ..., m, where $m \ge 4$ and $x_1 < x_2 < \cdots < x_m$. Unlike some other spline interpolation algorithms, derivative end conditions are not imposed. The spline interpolant chosen has m-4 interior knots $\lambda_5, \lambda_6, ..., \lambda_m$, which are set to the values of $x_3, x_4, ..., x_{m-2}$ respectively. This spline is represented in its B-spline form (see Cox 1975a):

$$s(x) = \sum_{i=1}^{m} c_i N_i(x),$$

where $N_i(x)$ denotes the normalized B-spline of degree 3, defined upon the knots $\lambda_i, \lambda_{i+1}, \dots, \lambda_{i+4}$, and c_i denotes its coefficient, whose value is to be determined by the function.

The use of B-splines requires eight additional knots λ_1 , λ_2 , λ_3 , λ_4 , λ_{m+1} , λ_{m+2} , λ_{m+3} and λ_{m+4} to be specified; e01ba sets the first four of these to x_1 and the last four to x_m .

The algorithm for determining the coefficients is as described in Cox 1975a except that QR factorization is used instead of LU decomposition. The implementation of the algorithm involves setting up appropriate information for the related function e02ba followed by a call of that function. (See e02ba for further details.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be computed as detailed in Section 8.

4 References

Cox M G 1975a An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108

Cox M G 1977 A survey of numerical methods for data and function approximation *The State of the Art in Numerical Analysis* (ed D A H Jacobs) 627–668 Academic Press

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{m}) - \mathbf{double}$ array

 $\mathbf{x}(i)$ must be set to x_i , the *i*th data value of the independent variable x, for i = 1, 2, ..., m. Constraint: $\mathbf{x}(i) < \mathbf{x}(i+1)$, for $i = 1, 2, ..., \mathbf{m} - 1$.

2: $\mathbf{v}(\mathbf{m})$ – double array

 $\mathbf{y}(i)$ must be set to y_i , the *i*th data value of the dependent variable y_i , for $i = 1, 2, \dots, m$.

[NP3663/21] e01ba.1

e01ba NAG Toolbox Manual

5.2 Optional Input Parameters

1: m - int32 scalar

Default: The dimension of the arrays \mathbf{x} , \mathbf{y} . (An error is raised if these dimensions are not equal.) m, the number of data points.

Constraint: $m \ge 4$.

5.3 Input Parameters Omitted from the MATLAB Interface

lck, wrk, lwrk

5.4 Output Parameters

1: lamda(lck) – double array

The value of λ_i , the *i*th knot, for i = 1, 2, ..., m + 4.

2: c(lck) - double array

The coefficient c_i of the B-spline $N_i(x)$, for i = 1, 2, ..., m. The remaining elements of the array are not used.

3: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

```
On entry, \mathbf{m} < 4,
or \mathbf{lck} < \mathbf{m} + 4,
or \mathbf{lwrk} < 6 \times \mathbf{m} + 16.
```

ifail = 2

The x-values fail to satisfy the condition

$$\mathbf{x}(1) < \mathbf{x}(2) < \mathbf{x}(3) < \cdots < \mathbf{x}(\mathbf{m}).$$

7 Accuracy

The rounding errors incurred are such that the computed spline is an exact interpolant for a slightly perturbed set of ordinates $y_i + \delta y_i$. The ratio of the root-mean-square value of the δy_i to that of the y_i is no greater than a small multiple of the relative *machine precision*.

8 Further Comments

The time taken by e01ba is approximately proportional to m.

All the x_i are used as knot positions except x_2 and x_{m-1} . This choice of knots (see Cox 1977) means that s(x) is composed of m-3 cubic arcs as follows. If m=4, there is just a single arc space spanning the whole interval x_1 to x_4 . If $m \ge 5$, the first and last arcs span the intervals x_1 to x_3 and x_{m-2} to x_m respectively. Additionally if $m \ge 6$, the *i*th arc, for $i=2,3,\ldots,m-4$ spans the interval x_{i+1} to x_{i+2} .

After the call

```
[lamda, c, ifail] = e01ba(x, y, lck);
```

the following operations may be carried out on the interpolant s(x).

e01ba.2 [NP3663/21]

E01 – Interpolation

The value of s(x) at $x = \mathbf{x}$ can be provided in the double variable \mathbf{s} by the call

```
[s, ifail] = e02bb(lamda, c, x); (see e02bb).
```

The values of s(x) and its first three derivatives at $x = \mathbf{x}$ can be provided in the double array \mathbf{s} of dimension 4, by the call

```
[s, ifail] = e02bc(lamda, c, x, left); (see e02bc).
```

Here **left** must specify whether the left- or right-hand value of the third derivative is required (see e02bc for details).

The value of the integral of s(x) over the range x_1 to x_m can be provided in the double variable **dint** by

```
[dint, ifail] = e02bd(lamda, c); (see e02bd).
```

9 Example

```
x = [0;
     0.2;
     0.4;
     0.6;
     0.75;
     0.9;
     1];
y = [1;
     1.22140275816017;
     1.49182469764127;
     1.822118800390509;
     2.117000016612675;
     2.45960311115695;
     2.718281828459045];
[lamda, c, ifail] = e01ba(x, y)
lamda =
         0
         0
         0
    0.4000
    0.6000
    0.7500
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.1336
    1.3726
    1.7827
    2.1744
    2.4918
    2.7183
         0
         0
         0
         0
ifail =
           0
```

[NP3663/21] e01ba.3 (last)